RBPs, RNA modifications, Non-coding RNAs, Epigenetics… in CANCER

RNA-Binding Proteins in Cancer: Old Players and New Actors

Bruno Pereira 1Marc Billaud 2Raquel Almeida 


RNA-binding proteins (RBPs) are key players in post-transcriptional events. The combination of versatility of their RNA-binding domains with structural flexibility enables RBPs to control the metabolism of a large array of transcripts. Perturbations in RBP-RNA networks activity have been causally associated with cancer development, but the rational framework describing these contributions remains fragmented. We review here the evidence that RBPs modulate multiple cancer traits, emphasize their functional diversity, and assess future trends in the study of RBPs in cancer.

Keywords: RNA-binding protein; cancer; post-transcriptional regulation; ribonucleoprotein complex.


Role of RNA Modifications in Cancer

Isaia Barbieri 1 2 3Tony Kouzarides 4 


Specific chemical modifications of biological molecules are an efficient way of regulating molecular function, and a plethora of downstream signalling pathways are influenced by the modification of DNA and proteins. Many of the enzymes responsible for regulating protein and DNA modifications are targets of current cancer therapies. RNA epitranscriptomics, the study of RNA modifications, is the new frontier of this arena. Despite being known since the 1970s, eukaryotic RNA modifications were mostly identified on transfer RNA and ribosomal RNA until the last decade, when they have been identified and characterized on mRNA and various non-coding RNAs. Increasing evidence suggests that RNA modification pathways are also misregulated in human cancers and may be ideal targets of cancer therapy. In this Review we highlight the RNA epitranscriptomic pathways implicated in cancer, describing their biological functions and their connections to the disease.


Non-coding RNAs, Epigenetics, and Cancer: Tying It All Together

Humberto J Ferreira 1Manel Esteller 2 3 


While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.

Keywords: Cancer; Epigenetics; Metastasis; Non-coding RNAs.